Memphis Depot

Dunn Field Groundwater Treatability Study

Presented by:

David D. Nelson, P.G. Project Manager, CH2M Hill

Memphis Depot Restoration Advisory Board Meeting October 21, 2004

Background

- Dunn Field Record of Decision (ROD)
 - April 2004
 - Groundwater remedies:
 - Source Area: Zero-Valent Iron (ZVI) injection
 - <u>Downgradient:</u> Permeable Reactive Barrier (PRB) and Monitored Natural Attenuation (MNA)
- Treatability Study conducted to evaluate Source Area Remedy
 - Pilot test conducted at Dunn Field
 - October 29, 2003 to April 27, 2004

ZVI Technology

- ZVI has been used to treat groundwater affected by chlorinated solvents since early 1990s
- In the ground, ZVI slowly oxidizes and produces hydrogen and ferrous iron
 - Chemical reaction occurs that reduces the concentrations of Chlorinated Volatile
 Organic Compounds (CVOC)

- ARS Technologies, Inc. (ARS)
 - Leading environmental contractor in ZVI injection and pneumatic fracturing technology
 - Drilled injection boreholes and injected ZVI using compressed nitrogen during pilot tests
 - Batch mixing

Pneumatic Fracturing Concept Fine-Grained Soils Fine - Grained Soil See Detail "A" After Pneumatic Fracture Before Pneumatic Fracture Vapor Movement in Soil Microstructure From http://www.arstechnologies.com

Treatability Study Objectives

- Determine effectiveness of ZVI to treat CVOCs in groundwater
- Determine amount of ZVI needed to treat CVOCs source areas effectively
- Define approximate radius of influence (ROI) of ZVI injection (treatment area)
- Assess most effective drilling and injection methods to achieve best results
 - Spacing and orientation of injection boreholes
 - Injection pressures
 - Injection duration

- Target areas with highest concentration of CVOCs in shallow aquifer
 - 75 to 90 feet below ground surface (bgs)
- Seven monitoring wells (5 new)
- Four injection boreholes (IW-1 to IW-4)

Site Preparation

- Work area stability
 - gravel and a geomembrane layer
- Mobilization
 - Rotasonic drilling rig
 - ZVI batch mixing trailer
 - Compressed nitrogen tubes trailer
- Site safety area
- Hydrogeologic testing

ZVI Injection Process

- Compressed nitrogen injection
 - Creates fractures in the soil that act as pathways for the ZVI
- ZVI/water slurry injection
- Clean water and nitrogen injection to flush system
- 2 to 2.5-foot intervals within the saturated zone

Injection Summary

- Total ZVI injected: 24,925 pounds
 - IW-1 6,599 pounds
 - IW-2 8,199 pounds
 - IW-3 2,882 pounds
 - IW-4 7,245 pounds
- Field observations
 - ZVI was distributed throughout the anticipated area of influence
 - Particularly concentrated along soil fractures

Groundwater Monitoring

- Baseline (pre-injection) sampling event
 - October 22 to 23, 2003
- Four post-injection sampling events
 - November 17 to 19, 2003
 - December 17 to 19, 2003
 - February 2 to 3, 2004
 - April 5 to 7, 2004
- Assess CVOC reduction rates

Results

- Average 95% decrease in CVOC concentrations in study areas
- No accumulation of undesirable byproducts
 - Vinyl chloride
 - Dichloroethene (DCE)
- Minimal hydrogeological impact
- Radius of injected ZVI ~ 25 feet (based upon confirmatory soil samples)
- Zone of influence ~ 40 feet
- 700 to 800 tons of ZVI required for full-scale remedy

Memphis Depot

Dunn Field Groundwater Treatability Study

Presented by:

David D. Nelson, P.G. Project Manager, CH2M Hill

Memphis Depot Restoration Advisory Board Meeting October 21, 2004

